A Suite of Tools for ROC Analysis of Spatial Models

نویسندگان

  • Jean-François Mas
  • Britaldo Silveira Soares-Filho
  • Robert Gilmore Pontius
  • Michelle Farfán Gutiérrez
  • Hermann Rodrigues
چکیده

The Receiver Operating Characteristic (ROC) is widely used for assessing the performance of classification algorithms. In GIScience, ROC has been applied to assess models aimed at predicting events, such as land use/cover change (LUCC), species distribution and disease risk. However, GIS software packages offer few statistical tests and guidance tools for ROC analysis and interpretation. This paper presents a suite of GIS tools designed to facilitate ROC curve analysis for GIS users by applying proper statistical tests and analysis procedures. The tools are freely available as models and submodels of Dinamica EGO freeware. The tools give the ROC curve, the area under the curve (AUC), partial AUC, lower and upper AUCs, the confidence interval of AUC, the density of event in probability bins and tests to evaluate the difference between the AUCs of two models. We present first the procedures and statistical tests implemented in Dinamica EGO, then the application of the tools to assess LUCC and species distribution models. Finally, we interpret and discuss the ROC-related statistics resulting from various case studies. OPEN ACCESS ISPRS Int. J. Geo-Inf. 2013, 2 870

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Spatial Geostatistical Analysis Models for Evaluating Variability of Soil Properties in Eastern Shiraz, Iran

ABSTRACT- The information on the spatial properties of soil is vital to improve soil management and to increase the crop productivity. Geostatistical analysis technique is one of the most important methods for determining the spatial properties of soil. The aim of this study was to investigate spatial variability of soil chemical and physical attributes for field management in eastern Shiraz, I...

متن کامل

Comparing ANN and CART to Model Multiple Land Use Changes: A Case Study of Sari and Ghaem-Shahr Cities in Iran

Most of the land use change modelers have used to model binary land use change rather than multiple land use changes. As a first objective of this study, we compared two well-known LUC models, called classification and regression tree (CART) and artificial neural network (ANN) from two groups of data mining tools, global parametric and local non-parametric models, to model multiple LUCs. The ca...

متن کامل

Pattern Analysis of City-Spatial Growth by Spatial Statistics (Case Study: Gorgan City)

    Urban planning has gone from the past to the present day to a greater extent based on physical factors, to the extent that the basis of urban planning plans and urban plans influenced urban development and physical spaces. It's The city is the product of complex economic and social relations and its spatial heterogeneity reflects the processes of widespread socio-economic-cultural-social ...

متن کامل

Bayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption

The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bay...

متن کامل

Spatial Design for Knot Selection in Knot-Based Low-Rank Models

‎Analysis of large geostatistical data sets‎, ‎usually‎, ‎entail the expensive matrix computations‎. ‎This problem creates challenges in implementing statistical inferences of traditional Bayesian models‎. ‎In addition,researchers often face with multiple spatial data sets with complex spatial dependence structures that their analysis is difficult‎. ‎This is a problem for MCMC sampling algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ISPRS Int. J. Geo-Information

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013